Package 'normfluodbf'

Title: Cleans and Normalizes FLUOstar DBF and DAT Files from 'Liposome' Flux Assays
Description: Cleans and Normalizes FLUOstar DBF and DAT Files obtained from liposome flux assays. Users should verify extended usage of the package on files from other assay types.
Authors: Tingwei Adeck [aut, cre, cph] , Tesla Adeck [cph], Amina Adeck [cph]
Maintainer: Tingwei Adeck <[email protected]>
License: MIT + file LICENSE
Version: 2.0.0
Built: 2025-03-06 05:50:18 UTC
Source: https://github.com/alphaprime7/normfluodbf

Help Index


The %there% operator

Description

The %there% operator

Usage

dfile %there% dirpath

Arguments

dfile

file

dirpath

directory

Value

logical

Examples

## Not run: 
fpath <- system.file("extdata", package = "normfluodbf", mustWork = TRUE)
"dat_1.dat" %there% fpath
## End(Not run)

Add Package Namespace

Description

Add Package Namespace

Usage

add_package_namespace(dir, package)

Arguments

dir

dir

package

package

Value

modified file

Examples

## Not run: add_package_namespace(dir, package)

Analyze

Description

Analyze

Usage

analyze_ready(plate)

## Default S3 method:
analyze_ready(plate)

## S3 method for class ''96well_plate''
analyze_ready(plate)

## S3 method for class ''384well_plate''
analyze_ready(plate)

## S3 method for class ''1536well_plate_t1''
analyze_ready(plate)

## S3 method for class ''1536well_plate_t2''
analyze_ready(plate)

Arguments

plate

plate

Value

plate

plate

plate

plate

plate

plate

plate

Examples

## Not run: analyze_ready(plate)

Capitalize

Description

Capitalize

Usage

average_fluorescence_by_row_cycle(plate)

Arguments

plate

plate

Value

capital letter

Examples

## Not run: average_fluorescence_by_row_cycle(plate)

Capitalize

Description

Capitalize

Usage

capitalize(x)

Arguments

x

well

Value

capital letter

Examples

## Not run: capitalize('a1')

Check Broken Packages

Description

Check Broken Packages

Usage

check_broken_packages()

Value

broken packages


Check Dirt

Description

Check Dirt

Usage

check_dirt(plate)

Arguments

plate

plate

Value

plate

See Also

Other plate_utils: get_wells_used(), plate_data_summary(), platename, remove_leading_zero(), saveloadutils, set_plate_version(), type()


Check package or function Usage

Description

Check package or function Usage

Usage

check_package_usage(directory, package_name)

Arguments

directory

directory

package_name

package or string

Value

use location

Examples

## Not run: check_package_usage('R','capitalize')

Child Type

Description

Child Type

Usage

child_plate_type(plate, child_type = NULL)

## Default S3 method:
child_plate_type(plate, child_type = NULL)

## S3 method for class 'normfluodbf_plate'
child_plate_type(plate, child_type = NULL)

Arguments

plate

plate

child_type

child type

Value

plate

plate

Examples

## Not run: child_plate_type()

DAT file data frame cleaner.

Description

The function takes the dirty data frame obtained from reading the FLUOstar DAT file and applies a function called comma_cleaner() to the dirty data frame, which automatically inserts NAs in place of the special characters, and rows with NAs only are removed.

Usage

clean_commas(df)

Arguments

df

A dirty data frame obtained from the FLUOstar DAT file.

Value

A clean data frame with clean NA values retained.

Author(s)

Tingwei Adeck

Examples

## Not run: clean_commas(df)

DAT file wrangler.

Description

The function takes the dirty data frame obtained from reading the FLUOstar DAT file, applies an original algorithm that inserts NAs in place of the special characters, and then applies a function called comma_cleaner() to the dirty data frame for the removal of commas, and finally, rows with NAs only are removed.

Usage

clean_odddat_optimus(df)

clean_even_dat(df)

Arguments

df

df

Value

A clean data frame with clean NA values retained.

df

Author(s)

Tingwei Adeck

Examples

## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
partial_cleaned_dat <- clean_odddat_optimus(dat_df)
## End(Not run)
## Not run: clean_even_dat(df)

Comma Cleaner function.

Description

This modular function, in the context of this package, is responsible for removing commas from attribute(s) values. Removal of commas facilitates the conversion of attributes into the numeric class.

Usage

comma_cleaner(comma_df)

Arguments

comma_df

A dirty data frame obtained from the FLUOstar DAT file.

Value

A clean data frame with numeric no-comma values for attribute(s).

Author(s)

Tingwei Adeck

Examples

## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- comma_cleaner(dat_df)
## End(Not run)

Comment Out

Description

Comment Out

Usage

comment_out_lines(input_file, output_file)

Arguments

input_file

file

output_file

file

Value

file

Examples

## Not run: comment_out_lines('tests/testthat/test_pipeline.R', 'tests/testthat/test_pipeline.R')

dat_1.

Description

FLUOstar .dat files used for creation of the update and unusable for immediate data analysis.

Usage

dat_1

Format

An object of class data.frame with 320 rows and 12 columns.


dat_2.

Description

FLUOstar .dat files used for creation of the update and unusable for immediate data analysis.

Usage

dat_2

Format

An object of class data.frame with 320 rows and 12 columns.


dat_3.

Description

FLUOstar .dat files used for creation of the update and unusable for immediate data analysis. This file is unique because it validates a major bug fix to ensure that users get the right output.

Usage

dat_3

Format

An object of class data.frame with 320 rows and 12 columns.


dat_4.

Description

FLUOstar .dat files used for creation of the update and unusable for immediate data analysis. This file is unique because it validates a major bug fix to ensure that users get the right output.

Usage

dat_4

Format

An object of class data.frame with 320 rows and 1 columns.


dat_5.

Description

FLUOstar .dat files used for creation of the update and unusable for immediate data analysis. This file is unique because it validates a major bug fix to ensure that users get the right output.

Usage

dat_5

Format

An object of class data.frame with 105 rows and 1 columns.


dat_6.

Description

FLUOstar .dat files used for creation of the update and unusable for immediate data analysis. This file is unique because it validates a major bug fix to ensure that users get the right output.

Usage

dat_6

Format

An object of class data.frame with 105 rows and 2 columns.


dat_7.

Description

FLUOstar .dat files used for creation of the update and unusable for immediate data analysis. This file is unique because it validates a major bug fix to ensure that users get the right output.

Usage

dat_7

Format

An object of class data.frame with 105 rows and 3 columns.


Attribute(s) naming function.

Description

This function is used to name attribute(s). Attribute(s) names, in this case, are equivalent to the well labels found on the microplate reader. An attribute for a sample loaded into row A - column 1 will be named A1. In short, the function takes a clean data frame and returns attribute names that match the FLUOstar plate layout often presented as an Excel file.

Usage

dat_col_names_horizontal(dat = NULL, df, rows_used = NULL, cols_used = NULL)

Arguments

dat

A string ("dat_1.dat") if the file is found within the present working directory (pwd) OR a path pointing directly to a ".dat" file.

df

A data frame that requires attribute labels.

rows_used

A character vector indicating the rows or tuples used on the microplate (usually a 96-well microplate). Initialized as NULL.

cols_used

A numeric vector indicating the plate columns or attributes used. Initialized as NULL.

Value

Returns a character or numeric vector of attribute(s) names for the normalized data frame.

Note

This function was designed to avoid the use of stringr. This function is designed to name attributes when the read direction is specified as horizontal.

Author(s)

Tingwei Adeck

Examples

## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale(nocomma_dat, tnp=3, cycles=40)
n = c('A','B','C')
sample_col_names <- dat_col_names_horizontal(dat=fpath,resampled_scaled, n)
## End(Not run)

Attribute(s) naming function.

Description

This function is used to name attribute(s). Attribute(s) names, in this case, are equivalent to the well labels found on the microplate reader. An attribute for a sample loaded into row A - column 1 will be named A1. In short, the function takes a clean data frame and returns attribute names that match the FLUOstar plate layout often presented as an Excel file.

Usage

dat_col_names_optimus(
  dat = NULL,
  df,
  rows_used = NULL,
  cols_used = NULL,
  user_specific_labels = NULL,
  read_direction = NULL
)

Arguments

dat

A string ("dat_1.dat") if the file is found within the present working directory (pwd) OR a path pointing directly to a ".dat" file.

df

A data frame that requires attribute labels.

rows_used

A character vector indicating the rows or tuples used on the microplate (usually a 96-well microplate). Initialized as NULL.

cols_used

A numeric vector indicating the plate columns or attributes used. Initialized as NULL.

user_specific_labels

A character vector where the user manually enters the used microplate wells based on the FLUOstar plate layout.

read_direction

A string input with two choices, “vertical” or “horizontal.” The user indicates “vertical” if the user intends to have a final data frame with samples arranged as sample type triplets (A1, B1, C1, A1, B1, C1) OR “horizontal” if the user intends to have a final data frame with samples

Value

Returns a character or numeric vector of attribute(s) names for the normalized data frame.

Note

Users are advised to input rows used but won’t be penalized for not doing so. If the user provides the rows used, then attribute names are generated for the user. The user must check to ensure that the names match the microplate layout. The user can leave the columns used as NULL if the user loaded samples from column 1 and did so in sequence. If the user fails to load in sequence from the first position, then the user must provide a numeric vector of columns used. For instance, where the user skips columns, the user will be prompted to interact with the program in order to ensure the final data frame has the correct attribute names. The user can bypass the rows used and columns used parameters if the user supplies a manually created character vector of the wells used in an experiment. The read direction parameter is used to determine the presentation of the samples in the final data frame.

Author(s)

Tingwei Adeck

See Also

normfluodat(), dat_col_names_rigid()

Examples

## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale(nocomma_dat, tnp=3, cycles=40)
n = c('A','B','C')
sample_col_names <- dat_col_names_optimus(dat = fpath, resampled_scaled, n)
## End(Not run)

Attribute(s) naming function.

Description

This function is used to name attribute(s). Attribute(s) names, in this case, are equivalent to the well labels found on the microplate reader. An attribute for a sample loaded into row A - column 1 will be named A1. In short, the function takes a clean data frame and returns attribute names that match the FLUOstar plate layout often presented as an Excel file.

Usage

dat_col_names_prime(
  dat = NULL,
  df,
  rows_used = NULL,
  cols_used = NULL,
  user_specific_labels = NULL
)

Arguments

dat

A string ("dat_1.dat") if the file is found within the present working directory (pwd) OR a path pointing directly to a ".dat" file.

df

A data frame that requires attribute labels.

rows_used

A character vector indicating the rows or tuples used on the microplate (usually a 96-well microplate). Initialized as NULL.

cols_used

A numeric vector indicating the plate columns or attributes used. Initialized as NULL.

user_specific_labels

A character vector where the user manually enters the used microplate wells based on the FLUOstar plate layout.

Value

Returns a character vector of attribute(s) names for the normalized data frame.

Author(s)

Tingwei Adeck

Examples

## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale(nocomma_dat, tnp=3, cycles=40)
n = c('A','B','C')
sample_col_names <- dat_col_names_prime(dat = fpath, resampled_scaled, n)
## End(Not run)

Attribute(s) naming function.

Description

This function is used to name attribute(s). Attribute(s) names, in this case, are equivalent to the well labels found on the microplate reader. An attribute for a sample loaded into row A - column 1 will be named A1. In short, the function takes a clean data frame and returns attribute names that match the FLUOstar plate layout often presented as an Excel file.

Usage

dat_col_names_rigid(
  dat = NULL,
  df,
  rows_used = NULL,
  cols_used = NULL,
  user_specific_labels = NULL,
  read_direction = NULL
)

Arguments

dat

A string ("dat_1.dat") if the file is found within the present working directory (pwd) OR a path pointing directly to a ".dat" file.

df

A data frame that requires attribute labels.

rows_used

A character vector indicating the rows or tuples used on the microplate (usually a 96-well microplate). Initialized as NULL.

cols_used

A numeric vector indicating the plate columns or attributes used. Initialized as NULL.

user_specific_labels

A character vector where the user manually enters the used microplate wells based on the FLUOstar plate layout.

read_direction

A string input with two choices, “vertical” or “horizontal.” The user indicates “vertical” if the user intends to have a final data frame with samples arranged as sample type triplets (A1, B1, C1, A1, B1, C1) OR “horizontal” if the user intends to have a final data frame with samples arranged as clusters per sample type (A1, A2, A3, B1, B2, B3).

Value

Returns a character vector of attribute(s) names for the normalized data frame.

Note

Users are advised to input rows used but won’t be penalized for not doing so. If the user provides the rows used, then attribute names are generated for the user. The user must check to ensure that the names match the microplate layout. The user can leave the columns used as NULL if the user loaded samples from column 1 and did so in sequence. If the user fails to load in sequence from the first position, then the user must provide a numeric vector of columns used. For instance, where the user skips columns, the user will be prompted to interact with the program in order to ensure the final data frame has the correct attribute names. The user can bypass the rows used and columns used parameters if the user supplies a manually created character vector of the wells used in an experiment. The read direction parameter is used to determine the presentation of the samples in the final data frame.

This naming function only returns a character vector hence the rigid suffix.

Author(s)

Tingwei Adeck

See Also

dat_col_names_optimus()

Examples

## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale(nocomma_dat, tnp=3, cycles=40)
n = c('A','B','C')
sample_col_names <- dat_col_names_rigid(dat = fpath, resampled_scaled, n)
## End(Not run)

Define Plate Parameters

Description

Define Plate Parameters

Usage

define_params(plate)

## Default S3 method:
define_params(plate)

## S3 method for class ''96well_plate''
define_params(plate)

## S3 method for class ''384well_plate''
define_params(plate)

## S3 method for class ''1536well_plate_t1''
define_params(plate)

## S3 method for class ''1536well_plate_t2''
define_params(plate)

set_default_params(plate)

Arguments

plate

plate

Value

default params

default params

default params

default params

default params

plate

Examples

## Not run: define_params(plate)

Define Plate Status

Description

Define Plate Status

Usage

define_status(plate)

## Default S3 method:
define_status(plate)

## S3 method for class ''96well_plate''
define_status(plate)

## S3 method for class ''384well_plate''
define_status(plate)

## S3 method for class ''1536well_plate_t1''
define_status(plate)

## S3 method for class ''1536well_plate_t2''
define_status(plate)

set_default_status(plate)

update_status_list(plate)

get_status_value(plate, index)

Arguments

plate

plate

index

index

Value

plate

status

status

status

status

status

status

plate

plate

plate

Examples

## Not run: define_steps(plate)

Define Plate Steps

Description

Define Plate Steps

Usage

define_steps(plate)

## Default S3 method:
define_steps(plate)

## S3 method for class 'normfluodbf_plate'
define_steps(plate)

## S3 method for class ''96well_plate''
define_steps(plate)

## S3 method for class ''384well_plate''
define_steps(plate)

## S3 method for class ''1536well_plate_t1''
define_steps(plate)

## S3 method for class ''1536well_plate_t2''
define_steps(plate)

set_default_steps(plate, ...)

update_steps_list(plate, new_key, new_value, index)

Arguments

plate

plate

...

custom steps

new_key

new_key

new_value

new_value

index

index

Value

steps

steps

steps

steps

steps

steps

plate

plate

Examples

## Not run: define_steps(plate)
## Not run: plate <- plate %>% update_steps_list('REMOVE_OUTLIER', 'remove_outlier', 3)

Detect Outliers

Description

Detect Outliers

Usage

detect_outliers_time_cn(plate, data)

detect_outliers_cn(plate, data)

Arguments

plate

plate

data

data

Value

data frame

data frame

data frame

Examples

## Not run: detect_outliers_time_cn(plate, data)

Directory Utils

Description

A function that facilitates a users' workflow by helping to check for DBFs in a directory.

A function that facilitates a users' workflow by helping to check for DATs in a directory.

Usage

list_dbfs(pathstring)

list_dats(pathstring)

is_file(pathstring)

is_dir(pathstring = NULL)

find_known_liposome_dat_file(fpath, fname)

find_known_liposome_dbf_file(fpath, fname)

Arguments

pathstring

path string

fpath

fpath

fname

fname

Value

directory utils

dbfs

dbfs

dbfs

dbfs

dbfs

dbfs

See Also

Other dirutils: normfluodbfcomms, sampledata

Examples

## Not run: 
fpath <- system.file("extdata", package = "normfluodbf", mustWork = TRUE)
list_dbfs(fpath)
list_dats(fpath)
is_file(fpath)
find_known_liposome_dat_file(fpath, 'dat_1.dat')
find_known_liposome_dbf_file(fpath, 'liposomes_218')
## End(Not run)

Random Port Normfluodbf Style

Description

Random Port Normfluodbf Style

Usage

find_random_port()

Details

Recursively find a random port that does not fall in the unsafe group Added some more unsafe ports for like PostgresDb (5432), MySQL (3306), StreamlitApp (8501), ngrok (4040), pinggy (4300), Flask (5000), Django (8000) and ReactApp (3000). Learnt a thing or two from Dean with recursion (Really Cool!!!).

Value

random port


Format Plate Data

Description

Format Plate Data

Usage

format_plate_data(plate)

## Default S3 method:
format_plate_data(plate)

## S3 method for class ''96well_plate''
format_plate_data(plate)

## S3 method for class ''384well_plate''
format_plate_data(plate)

## S3 method for class ''1536well_plate_t1''
format_plate_data(plate)

## S3 method for class ''1536well_plate_t2''
format_plate_data(plate)

Arguments

plate

plate

Value

plate

plate

plate

plate

plate

plate

plate

Examples

## Not run: format_plate_data(plate)

Wells Used

Description

Wells Used

Usage

get_wells_used(pl_data)

Arguments

pl_data

data

Value

wells used

See Also

Other plate_utils: check_dirt(), plate_data_summary(), platename, remove_leading_zero(), saveloadutils, set_plate_version(), type()

Examples

## Not run: get_wells_used(data)

Get File Name(s)

Description

Get File Name(s)

Usage

get_dbf_file_name(dbf_file)

get_dat_file_name(dat_file)

get_dat_common_name(dat_file)

get_common_dat_names(dat_files)

Arguments

dbf_file

DBF file

dat_file

DAT file

dat_files

DAT files

Value

file

name

name

name

name

Examples

## Not run: 
get_dbf_file_name(dbf_file = "liposomes_218.dbf")
get_dat_file_name(dat_file = "dat_1.dat")
get_common_dat_names(dat_files = list.files(fpath, pattern = "\\.dat$"))
## End(Not run)

Globals Cache

Description

Globals Cache


Is Normalized

Description

Is Normalized

Usage

is_normalized(data, type = c("min-max", "z-score", "hundred"))

Arguments

data

type

type

type

Value

boolean

boolean

Examples

## Not run: is_normalized(data,type)

Run the shiny App checking dependencies in R code ... WARNING In addition to the functions provided in this package, the normfluodbf package also provides an interactive tool that can be used to analyze liposome flux assay data more easily. The tool will be launched in a web browser.

Description

Run the shiny App checking dependencies in R code ... WARNING In addition to the functions provided in this package, the normfluodbf package also provides an interactive tool that can be used to analyze liposome flux assay data more easily. The tool will be launched in a web browser.

Usage

launch()

Cleans and Normalizes DBF files obtained from experiments using the FLUOstar Omega microplate reader (from BMG LABTECH).

Description

The simplest function utilization scenario entails an input of the path to a DBF file obtained from the FLUOstar microplate (usually a 96-well microplate) reader; In a single step, this function will create a data frame, clean the data frame, normalize the data frame, append a "Cycle_Number" attribute, perform an adjustment to the “time” attribute and return a data frame that is ready for analysis. Since the initial publication of this package, several changes have been made to improve the user experience and to give the user more options to fine-tune the output from the package to meet the users’ aesthetic needs. Users who decide to move past the simplest utility scenario have been given more options to customize the output based on the users’ needs. Notably, several normalization sub-parameters have been provided in the package which yields different outputs based on what the user is used to seeing. Just as the FLUOstar instrument is built to handle an array of assays, this function is designed to be multi-dimensional (meaning it can handle data with the same DBF extension from other assay types), on the condition that the data from assay types other than liposome flux assays follow the same data format this package was designed to handle. Of course, users of this package are advised to pre-analyze DBF files from other assay types to ensure they are compliant with this package (compliance in this scenario is simple meaning DBF files from other assays should be like DBF files from liposome flux assays).

Usage

norm_tidy_dbf(
  file = NULL,
  norm_scale = NULL,
  transformed = NULL,
  fun = NA,
  ...
)

normfluordbf(file = NULL, norm_scale = NULL, transformed = NULL, fun = NA, ...)

normfluodbf(file = NULL, norm_scale, transformed = NULL, fun = NA, ...)

Arguments

file

A string ("liposomes_xxx.dbf") if the file is found within the present working directory (pwd) OR a path pointing directly to a ".dbf" file.

norm_scale

This parameter takes sub-parameters: 'raw’ , hundred’ , 'one’ , 'z-score' , or 'decimal’ , which denotes the normalization type or scale; The parameter is initialized as NULL.

transformed

This parameter takes input 'log', which denotes a logarithmic box-cox transformation; Initialized as NULL.

fun

A parameter defined as NA is used for Boolean expressions or manipulation.

...

An abstract placeholder or container parameter that can be used to capture extra variables if needed.

Value

A normalized data frame with an appended "Cycle_Number" attribute.

A normalized data frame with an appended "Cycle_Number" attribute.

A normalized data frame with an appended "Cycle_Number" attribute.

A normalized data frame with an appended "Cycle_Number" attribute.

Note

The default normalization sub-parameter outputs values in the 0-1 range. Unless a “norm_scale” level is specified by the user, the default output is in the 0-1 range. The “norm_scale” sub-parameter “decimal” is a machine-learning tool and should be avoided; it also provides no advantage for basic research analysis as its output operates on a sliding scale just like the raw data. Logarithmic transformation provides a minuscule advantage in data analysis and could/should be avoided. Backward compatibility is maintained in all updates, so there should be no issues with using the package the way the user was used to. The favorite "norm_scale" level is "z-score" since it divides the axis into negative and positive, thus facilitating interpretation.

The norm_scale must be provided if the user chooses to use this option.

Author(s)

Tingwei Adeck

See Also

normfluordbf(), normfluodat()

Examples

## Not run: 
fpath <- system.file("extdata", "liposomes_214.dbf", package = "normfluodbf", mustWork = TRUE)
normalized_dbf <- norm_tidy_dbf(file=fpath, norm_scale = 'raw')
normalized_dbf <- normfluordbf(file=fpath, norm_scale = 'raw')
## End(Not run)
## Not run: wells = normfluodbf(lipsum_214, norm_scale = 'hundred')

liposomes_214.

Description

FLUOstar .dbf file in wide format and unable to use for data analysis.

Usage

liposomes_214

Format

An object of class data.frame with 11 rows and 52 columns.


liposomes_215.

Description

FLUOstar .dbf file in wide format and unable to use for data analysis.

Usage

liposomes_215

Format

An object of class data.frame with 11 rows and 52 columns.


liposomes_216.

Description

FLUOstar .dbf file in wide format and unable to use for data analysis.

Usage

liposomes_216

Format

An object of class data.frame with 8 rows and 52 columns.


liposomes_218.

Description

FLUOstar .dbf file in wide format and unable to use for data analysis.

Usage

liposomes_218

Format

An object of class data.frame with 11 rows and 52 columns.


liposomes_221.

Description

FLUOstar .dbf file in wide format and unable to use for data analysis.

Usage

liposomes_221

Format

An object of class data.frame with 38 rows and 52 columns.


liposomes_227.

Description

FLUOstar .dbf file in wide format and unable to use for data analysis.

Usage

liposomes_227

Format

An object of class data.frame with 29 rows and 52 columns.


Load Plate Data

Description

Load Plate Data

Usage

load_plate_data(plate)

load_plate_data(plate) <- value

Arguments

plate

plate

value

data

Value

plate

plate

plate

Examples

## Not run: load_plate_data(plate,value = data)

Load Plate Meta

Description

Load Plate Meta

Usage

load_plate_meta(plate)

load_plate_meta(plate) <- value

Arguments

plate

plate

value

metadata

Value

plate

plate

plate

Examples

## Not run: load_plate_meta(plate, meta)

Modify Plate Data

Description

Modify Plate Data

Usage

modify_plate_data(plate)

## Default S3 method:
modify_plate_data(plate)

## S3 method for class ''96well_plate''
modify_plate_data(plate)

## S3 method for class ''384well_plate''
modify_plate_data(plate)

## S3 method for class ''1536well_plate_t1''
modify_plate_data(plate)

## S3 method for class ''1536well_plate_t2''
modify_plate_data(plate)

Arguments

plate

plate

Value

plate

plate

plate

plate

plate

plate

plate

Examples

## Not run: modify_plate_meta(plate)

Move File

Description

Move File

Usage

move_file(source_path, destination_path)

Arguments

source_path

src

destination_path

dest

Value

kinetic file

Examples

## Not run: 
source_file <- "path/to/source/file.txt"
destination_file <- "path/to/destination/file.txt"
move_file(source_file, destination_file)
move_file("~/Documents/Wip/R/PkgDev/pdf","~/Wip/R/PkgDev/R/pdf")
## End(Not run)

Multiplot

Description

Multiplot

Usage

multiplot(..., plotlist = NULL, file, cols = 1, layout = NULL)

Arguments

...

extra

plotlist

list

file

file

cols

cols

layout

layout

Value

grid plot


Normalize

Description

Normalize

Usage

normalize(plate)

## Default S3 method:
normalize(plate)

## S3 method for class ''96well_plate''
normalize(plate)

## S3 method for class ''384well_plate''
normalize(plate)

## S3 method for class ''1536well_plate_t1''
normalize(plate)

## S3 method for class ''1536well_plate_t2''
normalize(plate)

normalize_dataframe(df)

Arguments

plate

plate

df

data frame

Value

plate

plate

plate

plate

plate

plate

plate

plate

Examples

## Not run: normalize(plate)
normalize(plate)
## End(Not run)

Normalize by Well

Description

Normalize by Well

Usage

normalize_by_well(plate)

## Default S3 method:
normalize_by_well(plate)

## S3 method for class ''96well_plate''
normalize_by_well(plate)

## S3 method for class ''384well_plate''
normalize_by_well(plate)

## S3 method for class ''1536well_plate_t1''
normalize_by_well(plate)

## S3 method for class ''1536well_plate_t2''
normalize_by_well(plate)

Arguments

plate

plate

Value

plate

plate

plate

plate

plate

plate

plate

Examples

## Not run: normalize_by_well(plate)

Normalizing Agents

Description

Normalizing Agents

Usage

min_max_norm(x)

min_max_norm_df(df)

min_max_norm_percent(x)

min_max_norm_percent_df(df)

norm_z(x)

norm_z_df(df)

decimal_scaling(x)

decimal_scaling_df(df)

log_transformation(x)

roundfluor(x)

Arguments

x

value(s)

df

data frame

Value

A normalized value when applied to a single value or a normalized attribute with values between the normalizing range.

normalized value (0-1)

normalized value (0-1)

normalized value (0-100)

normalized value (0-100)

normalized value (Z = N (0,1))

normalized value (Z = N (0,1))

normalized value

normalized value

log value

rounded value

See Also

Other normfluodbf_utils: fluorthresholdcheck

Examples

## Not run: 
test_df <- as.data.frame(c(seq(40)))
colnames(test_df) <- "test"
test_df_norm <- lapply(test_df[1:ncol(test_df)], min_max_norm)
## End(Not run)

Plot Plate - Favorite is Fluostar style

Description

Plot Plate - Favorite is Fluostar style

Usage

## S3 method for class ''96well_plate''
plot(
  x,
  whichplot = 1,
  fluorstarplot = 1 %in% whichplot,
  superimpose = 2 %in% whichplot,
  plate_layout = 3 %in% whichplot,
  plot_side_by_side = 4 %in% whichplot,
  legend_labels = NULL,
  plot_name = NULL,
  ...
)

## S3 method for class ''384well_plate''
plot(
  x,
  whichplot = 1,
  fluorstarplot = 1 %in% whichplot,
  superimpose = 2 %in% whichplot,
  plate_layout = 3 %in% whichplot,
  plot_side_by_side = 4 %in% whichplot,
  legend_labels = NULL,
  plot_name = NULL,
  ...
)

## S3 method for class ''1536well_plate_t1''
plot(
  x,
  whichplot = 1,
  fluorstarplot = 1 %in% whichplot,
  superimpose = 2 %in% whichplot,
  plate_layout = 3 %in% whichplot,
  plot_side_by_side = 4 %in% whichplot,
  legend_labels = NULL,
  plot_name = NULL,
  ...
)

## S3 method for class ''1536well_plate_t2''
plot(
  x,
  whichplot = 1,
  fluorstarplot = 1 %in% whichplot,
  superimpose = 2 %in% whichplot,
  plate_layout = 3 %in% whichplot,
  plot_side_by_side = 4 %in% whichplot,
  legend_labels = NULL,
  plot_name = NULL,
  ...
)

Arguments

x

plot requirement

whichplot

int

fluorstarplot

whichplot = 1

superimpose

whichplot = 2

plate_layout

whichplot = 3

plot_side_by_side

whichplot = 4

legend_labels

labels whichplot = 2,4

plot_name

plot name

...

additional parameters

Value

plot object

print plot (return plate)

print plot (return plate)

print plot (return plate)

print plot (return plate)

Examples

## Not run: plot(plate, whichplot = 1)

Cleans and normalizes DAT files obtained from experiments using the FLUOstar Omega microplate reader (from BMG LABTECH).

Description

The simplest case scenario entails inputting the name or directory of a DAT file as a string, the number of rows denoted by the tnp (test, negative, positive) parameter, and the number of cycles (selected by the user when running the FLUOstar instrument). The program takes these three baseline parameters, performs cleaning and normalization of the DAT file, and then appends an attribute called “Cycle_Number” to the normalized data frame.

The simplest case scenario entails inputting the name or directory of a DAT file as a string, the number of rows denoted by the tnp (test, negative, positive) parameter, and the number of cycles (selected by the user when running the FLUOstar instrument). The program takes these three baseline parameters, performs cleaning and normalization of the DAT file, and then appends an attribute called “Cycle_Number” to the normalized data frame.

The simplest case scenario entails inputting the name or directory of a DAT file as a string, the number of rows denoted by the tnp (test, negative, positive) parameter, and the number of cycles (selected by the user when running the FLUOstar instrument). The program takes these three baseline parameters, performs cleaning and normalization of the DAT file, and then appends an attribute called “Cycle_Number” to the normalized data frame.

The simplest case scenario entails inputting the name or directory of a DAT file as a string, the number of rows denoted by the tnp (test, negative, positive) parameter, and the number of cycles (selected by the user when running the FLUOstar instrument). The program takes these three baseline parameters, performs cleaning and normalization of the DAT file, and then appends an attribute called “Cycle_Number” to the normalized data frame.

Usage

normfluordat(
  dat,
  tnp,
  cycles,
  rows_used = NULL,
  cols_used = NULL,
  user_specific_labels = NULL,
  read_direction = NULL,
  na_omit = NULL
)

normfluodat(
  dat,
  tnp,
  cycles,
  rows_used = NULL,
  cols_used = NULL,
  user_specific_labels = NULL,
  read_direction = NULL,
  norm_scale = NULL,
  interval = NULL,
  first_end = NULL,
  pause_duration = NULL,
  end_time = NULL,
  normfluodbf.verbose = TRUE
)

normfluodatlite(
  dat,
  tnp,
  cycles,
  rows_used = NULL,
  cols_used = NULL,
  user_specific_labels = NULL,
  read_direction = NULL,
  norm_scale = NULL
)

normfluodatfull(
  dat,
  tnp,
  cycles,
  rows_used = NULL,
  cols_used = NULL,
  user_specific_labels = NULL,
  read_direction = NULL,
  norm_scale = NULL,
  na_omit = NULL
)

Arguments

dat

A string ("dat_1.dat") if the file is found within the present working directory (pwd) OR a path pointing directly to a ".dat" file.

tnp

A numeric value indicating the number of rows used. TNP is used as an acronym for Test, Negative, Positive.

cycles

A numeric value indicating the number of cycles selected by the user when running the FLUOstar instrument.

rows_used

A character vector of the rows used; ru = c('A','B','C').

cols_used

A numeric vector of the columns used; cu = c(1,2,3).

user_specific_labels

A character vector manually prepared by the user to denote the wells used on the microplate reader; usl = c('A1','B1','C1').

read_direction

A string input with two choices, “vertical” or “horizontal.” The user indicates “vertical” if the user intends to have a final data frame with samples arranged as sample type triplets (A1, B1, C1, A1, B1, C1) OR “horizontal” if the user intends to have a final data frame with samples arranged as clusters per sample type (A1, A2, A3, B1, B2, B3).

na_omit

Takes a string "yes" OR "no".

norm_scale

This parameter takes sub-parameters: 'raw’ , hundred’ , 'one’ , 'z-score' , or 'decimal’ , which denotes the normalization type or scale; Initialized as NULL.

interval

The time interval chosen for the assay often in seconds.

first_end

The end time of the initial run, often the pause for the introduction of a new substance. This can be the cycle number chosen for the initial stop.

pause_duration

The time between the first end (pause) and resumption of the assay.

end_time

The final end time of the assay.

normfluodbf.verbose

verbose option

Value

A normalized data frame with an appended "Cycle_Number" attribute. The “Cycle_Number” attribute is the X-variable.

A normalized data frame with an appended "Cycle_Number" attribute. The “Cycle_Number” attribute is the X-variable.

A normalized data frame with an appended "Cycle_Number" attribute. The “Cycle_Number” attribute is the X-variable.

A normalized data frame with an appended "Cycle_Number" attribute. The “Cycle_Number” attribute is the X-variable.

Note

This function is a single-step function leveraging several subordinate functions. It is assumed that the user has the 3 baseline parameters to get this function working. Users must double-check attribute names to ensure they end up with accurate results.

This function is a single-step function leveraging several subordinate functions. It is assumed that the user has the 3 baseline parameters to get this function working. Users must double-check attribute names to ensure they end up with accurate results.

This function is a single-step function leveraging several subordinate functions. It is assumed that the user has the 3 baseline parameters to get this function working. Users must double-check attribute names to ensure they end up with accurate results.

Author(s)

Tingwei Adeck

See Also

normfluodat()

normfluodatlite()

normfluodat()

normfluodat()

Examples

## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
normalized_fluo_dat <- normfluordat(dat=fpath, tnp = 3, cycles = 40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_4.dat", package = "normfluodbf", mustWork = TRUE)
normalized_fluo_dat <- normfluodat(dat=fpath, tnp = 3, cycles = 40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
normalized_fluo_dat <- normfluodatlite(dat=fpath, tnp = 3, cycles = 40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
normalized_fluo_dat <- normfluodatfull(dat=fpath, tnp = 3, cycles = 40)
## End(Not run)

Parent Type

Description

Parent Type

Usage

parent_plate_type(plate, type = NULL)

## S3 method for class 'normfluodbf_plate'
parent_plate_type(plate, type = NULL)

## Default S3 method:
parent_plate_type(plate, type = NULL)

## S3 method for class ''96well_plate''
parent_plate_type(plate, type = NULL)

## S3 method for class ''384well_plate''
parent_plate_type(plate, type = NULL)

## S3 method for class ''1536well_plate_t1''
parent_plate_type(plate, type = NULL)

## S3 method for class ''1536well_plate_t2''
parent_plate_type(plate, type = NULL)

Arguments

plate

plate

type

parent type

Value

plate

plate

plate

plate

plate

Examples

## Not run: parent_plate_type()

Plate

Description

Plate

Usage

empty_plate()

new_plate()

init_plate(plate = NULL, type = NULL, child_type = NULL)

setup_plate(plate, ...)

reset_plate(plate)

use_setup_plate()

use_initialized_plate()

Arguments

plate

plate

type

parent type

child_type

child type

...

dots

Value

plate

plate

plate

plate

plate

plate

plate

plate

Examples

## Not run: 
empty_plate()
new_plate()
init_plate()
setup_plate(plate)
reset_plate()
## End(Not run)

Plate Data Summary

Description

Plate Data Summary

Usage

plate_data_summary(plate)

Arguments

plate

plate

Value

sprintf string

See Also

Other plate_utils: check_dirt(), get_wells_used(), platename, remove_leading_zero(), saveloadutils, set_plate_version(), type()


Plate Types Tibble

Description

Plate Types Tibble

Plate Types List

Plate Types Vector

Plate Types Global

Usage

plate_types_tbl()

plate_types

plate_types_vector()

Format

An object of class list of length 5.

Details

The list equivalent of the tibble from plate_types_tbl.

The vector equivalent of the tibble from plate_types_tbl.

Value

A tibble

A list

A Vector

See Also

plate_types()


Plate Data

Description

Plate Data

Usage

plate_data(file, tnp = NULL, cycles = NULL, rows_used = NULL, ...)

Arguments

file

file

tnp

tnp

cycles

cycles

rows_used

rows_used

...

dots

Value

plate data

plate data

Examples

## Not run: plate_data(file, tnp, cycles, rows_used = c(A,B,C), norm_scale = 'raw')

Plate Meta

Description

Plate Meta

Usage

plate_meta(plate, num_wells)

## Default S3 method:
plate_meta(plate, num_wells = 96L)

## S3 method for class ''96well_plate''
plate_meta(plate, num_wells = 96L)

## S3 method for class ''384well_plate''
plate_meta(plate, num_wells = 384L)

## S3 method for class ''1536well_plate_t1''
plate_meta(plate, num_wells = 1536L)

## S3 method for class ''1536well_plate_t2''
plate_meta(plate, num_wells)

Arguments

plate

plate

num_wells

number of wells

Value

plate

plate

plate

plate

plate

plate

plate

Examples

## Not run: plate_meta(plate, num_wells = 96L)

Plate Name

Description

Plate Name

Usage

name(plate)

name(plate) <- value

Arguments

plate

plate

value

value

Value

plate

plate

See Also

Other plate_utils: check_dirt(), get_wells_used(), plate_data_summary(), remove_leading_zero(), saveloadutils, set_plate_version(), type()


Print

Description

Print

Usage

## S3 method for class ''96well_plate''
print(x, ...)

## S3 method for class ''384well_plate''
print(x, ...)

## S3 method for class ''1536well_plate_t1''
print(x, ...)

## S3 method for class ''1536well_plate_t2''
print(x, ...)

Arguments

x

print requirement

...

placeholder

Value

plate

plate

plate

plate

Examples

## Not run: plate

Quiet

Description

Quiet

Usage

quiet(
  expr,
  suppress_messages = FALSE,
  suppress_warnings = FALSE,
  suppress_output = FALSE,
  all = FALSE
)

Arguments

expr

expression

suppress_messages

logical

suppress_warnings

logical

suppress_output

logical

all

logical

Value

suppress comms

Examples

## Not run: quiet(expr)

Format Well Names

Description

Format Well Names

Usage

remove_leading_zero(names_vector)

Arguments

names_vector

column names

Value

vector

See Also

Other plate_utils: check_dirt(), get_wells_used(), plate_data_summary(), platename, saveloadutils, set_plate_version(), type()

Examples

## Not run: remove_leading_zero(names)

Outliers

Description

Outliers

Usage

remove_outliers(plate)

## Default S3 method:
remove_outliers(plate)

## S3 method for class ''96well_plate''
remove_outliers(plate)

## S3 method for class ''384well_plate''
remove_outliers(plate)

## S3 method for class ''1536well_plate_t1''
remove_outliers(plate)

## S3 method for class ''1536well_plate_t2''
remove_outliers(plate)

Arguments

plate

plate

Value

plate

plate

plate

plate

plate

plate

plate

Note

Works on a data frame not in well format.

Works on a data frame not in well format.

Works on a data frame not in well format.

Works on a data frame not in well format.

Works on a data frame not in well format.

Examples

## Not run: remove_outliers(plate)

Replace Word

Description

Replace Word

Usage

replace_word_in_file(file_path, old_word, new_word)

Arguments

file_path

path

old_word

old func name

new_word

new func name

Value

file

Note

Solves the inconvenient problem of renaming a function correctly and having to manually correct it.

Examples

## Not run: replace_word_in_file('R/plate_plot.R','plot_fluostar_style', 'plot_in_well')

A function to create an attribute or column for each sample loaded into the microplate wells.

Description

Creates a data frame where each sample loaded into the microplate wells has a separate attribute.

Creates a data frame where each sample loaded into the microplate wells has a separate attribute. NA values are retained for more control.

A function that takes tuples or rows consisting of several samples and perform a putative resampling to yield another data frame with a separate attribute for each sample.

A function that takes tuples or rows consisting of several samples and perform a putative resampling to yield another data frame with a separate attribute for each sample. NA values are retained.

A function that takes tuples or rows consisting of several samples and perform a putative resampling to yield another data frame with a separate attribute for each sample.

A function that takes tuples or rows consisting of several samples and perform a putative resampling to yield another data frame with a separate attribute for each sample.

Creates a data frame where each sample loaded into the microplate wells has a separate attribute.

Creates a data frame where each sample loaded into the microplate wells has a separate attribute. NA values are retained.

Creates a data frame where each sample loaded into the microplate wells has a separate attribute.

Creates a data frame where each sample loaded into the microplate wells has a separate attribute.

Usage

resample_dat_scale(df, tnp, cycles)

resample_dat_scale_naretainer(df, tnp, cycles)

resample_dat_scale_alt(df, tnp, cycles, na_omit = NULL)

resample_dat_scale_alt_na(df, tnp, cycles)

resample_dat_scale_alt_bf_na(df, tnp, cycles)

resample_dat_scale_alt_bfv(df, tnp, cycles)

resample_dat_scale_optimus(df, tnp, cycles)

resample_dat_scale_optimus_na(df, tnp, cycles)

resample_dat_scale_optimus_backend(df, tnp, cycles, na_omit = NULL)

resample_vect_scale(df, tnp, cycles, method = c("normal", "brute", "vector"))

Arguments

df

A clean data frame with attributes or tuples containing a mixture of samples.

tnp

A numeric value indicating the number of rows used. TNP is used as an acronym for Test, Negative, Positive.

cycles

A numeric value indicating the number of cycles selected by the user when running the FLUOstar instrument.

na_omit

Takes a string "yes" OR "no".

method

A string 'normal', 'brute' or 'vector' to specify the method of resampling.

Value

A new data frame where separated samples are assigned a separate attribute or column.

A new data frame where separated samples are assigned a separate attribute or column.

A new data frame where separated samples are assigned a separate attribute or column.

A new data frame where separated samples are assigned a separate attribute or column.

A new data frame where separated samples are assigned a separate attribute or column.

A new data frame where separated samples are assigned a separate attribute or column.

A new data frame where separated samples are assigned a separate attribute or column.

A new data frame where separated samples are assigned a separate attribute or column.

A new data frame where separated samples are assigned a separate attribute or column.

A new data frame where separated samples are assigned a separate attribute or column.

Note

This function builds on or scales-up @seealso resample_dat(), hence the suffix scale. This function is less optimized than @seealso resample_dat_scale_optimus().

This function builds on or scales-up @seealso resample_dat(), hence the suffix scale. This function is less optimized than @seealso resample_dat_scale_optimus().

This function builds on or scales-up @seealso resample_dat(), hence the suffix scale. This function is more optimized than @seealso resample_dat_scale(), hence the suffix scale_optimus.

This function builds on or scales-up @seealso resample_dat(), hence the suffix scale. This function is more optimized than @seealso resample_dat_scale(), hence the suffix scale_optimus.

This function builds on or scales-up @seealso resample_dat(), hence the suffix scale. This function is more optimized than @seealso resample_dat_scale(), hence the suffix scale_optimus.

This is the pseudo-vectorized approach and should be a more efficient function. This function will produce a vertical layout as defined in this package. This function inspired by the lapply approach pretty much applies the

Author(s)

Tingwei Adeck

See Also

resample_dat()

resample_dat()

resample_dat_alt()

resample_dat_alt()

resample_dat_alt(), resample_dat_scale_alt()

resample_dat_alt(), resample_dat_scale_alt()

resample_dat()

resample_dat()

resample_dat()

resample_dat_vect()

resample_dat_vect(). As a matter of fact, I took this approach to create compatibility with lapply and rapply but that failed.

Examples

## Not run: 
fpath <- system.file("extdata", "dat_4.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale(nocomma_dat, tnp=3, cycles=40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_4.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale_naretainer(nocomma_dat, tnp=3, cycles=40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale_alt(nocomma_dat, tnp=3, cycles=40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale_alt_na(nocomma_dat, tnp=3, cycles=40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_4.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale_alt_bf_na(nocomma_dat, tnp=3, cycles=40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_4.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale_alt_bfv(nocomma_dat, tnp=3, cycles=40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale_optimus(nocomma_dat, tnp=3, cycles=40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale_optimus_na(nocomma_dat, tnp=3, cycles=40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_1.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
resampled_scaled <- resample_dat_scale_optimus_backend(nocomma_dat, tnp=3, cycles=40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_3.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
alt_test_scale <- resample_vect_scale(nocomma_dat,3,40, method = 'brute')
alt_test_scale <- resample_vect_scale(nocomma_dat,3,40, method = 'normal')
alt_test_scale <- resample_vect_scale(nocomma_dat,3,40, method = 'vector')
alt_test_scale_norm <- lapply(alt_test_scale, min_max_norm)
## End(Not run)

A function to create an attribute or column for each sample loaded into the microplate wells.

Description

Designed as a prototype function to take a single attribute or column consisting of several samples and perform a putative resampling to yield another data frame with a separate attribute for each sample.

Designed as a prototype function to take a single attribute or column consisting of several samples and perform a putative resampling to yield another data frame with a separate attribute for each sample.

: Designed as a prototype function to take a single tuple or row consisting of several samples and perform a putative resampling to yield another data frame with a separate attribute for each sample.

Usage

resample_dat_vect(df, tnp, cycles, output = NULL)

resample_dat(df, tnp, cycles)

resample_dat_alt(df, tnp, cycles)

Arguments

df

A clean data frame with attributes or tuples containing a mixture of samples.

tnp

A numeric value indicating the number of rows used. TNP is used as an acronym for Test, Negative, Positive.

cycles

A numeric value indicating the number of cycles selected by the user when running the FLUOstar instrument.

output

A choice between "df' and 'vector' outputs. Leave NULL for a data frame.

Value

A new data frame where separated samples are assigned a separate attribute or column.

A new data frame where separated samples are assigned a separate attribute or column.

A new data frame where separated samples are assigned a separate attribute or column.

Note

This is the vectorized approach and should be a more efficient function when compared to say

Author(s)

Tingwei Adeck

See Also

resample_vect_scale()

resample_dat() or @seealso resample_dat_alt(). This function will produce a vertical layout as defined in this package.

resample_dat_scale(), resample_dat_scale_optimus()

resample_dat_scale_alt()

Examples

## Not run: 
fpath <- system.file("extdata", "dat_4.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
samples_delineated <- resample_dat_vect(nocomma_dat, tnp=3, cycles=40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_5.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
samples_delineated <- resample_dat(nocomma_dat, tnp=3, cycles=40)
## End(Not run)
## Not run: 
fpath <- system.file("extdata", "dat_5.dat", package = "normfluodbf", mustWork = TRUE)
dat_df <- read.table(file=fpath)
nocomma_dat <- clean_odddat_optimus(dat_df)
samples_delineated <- resample_dat_alt(nocomma_dat, tnp=3, cycles=40)
## End(Not run)

Run the shiny App In addition to the functions provided in this package, the normfluodbf package also provides an interactive tool that can be used to analyze liposome flux assay data more easily. The tool will be launched in a web browser.

Description

Run the shiny App In addition to the functions provided in this package, the normfluodbf package also provides an interactive tool that can be used to analyze liposome flux assay data more easily. The tool will be launched in a web browser.

Usage

run_demo()

Run Demo Background

Description

Run Demo Background

Usage

run_demo_bg(
  host = getOption("shiny.host", "127.0.0.1"),
  appDir = system.file("shiny/demo", package = "normfluodbf")
)

Arguments

host

localhost

appDir

dir


Run Demo in Background

Description

Run Demo in Background

Usage

run_demo_in_background(
  appDir = system.file("shiny/demo", package = "normfluodbf"),
  job_name,
  host,
  port
)

Arguments

appDir

dir

job_name

job name

host

host ip (localhost)

port

port

Value

NULL (run script)


Run Demo Script

Description

Run Demo Script

Usage

run_demo_script(
  appDir = system.file("shiny/demo", package = "normfluodbf"),
  port,
  host
)

Arguments

appDir

App Dir

port

Port

host

Host

Details

A quick script inspired by gptstudio to aid in running the cool normfluodbf demo.

Value

Script


Get Development Data

Description

Get Development Data

Usage

sample_data_dir()

sample_data_file(gotofile = NULL)

Arguments

gotofile

file

Value

directory data

See Also

Other dirutils: dirutils, normfluodbfcomms

Examples

## Not run: 
fpath <- system.file("extdata", package = "normfluodbf", mustWork = TRUE)
sample_data_dir()
sample_data_file(gotofile = NULL)
## End(Not run)

Save and Load Plate

Description

Save and Load Plate

Usage

save_plate(plate, suffix = NULL, interactive = F)

save_rds_plate(plate, save_name, use_tempfile = F)

load_rds_plate(plate, interactive = F)

var_str(var)

Arguments

plate

plate

suffix

suffix

interactive

boolean

save_name

name

use_tempfile

boolean

var

variable

Value

plate

plate

plate

plate

See Also

Other plate_utils: check_dirt(), get_wells_used(), plate_data_summary(), platename, remove_leading_zero(), set_plate_version(), type()


Set The Plate Types

Description

Set The Plate Types

Usage

set_assiette_type(plate, type = NULL, child_type = NULL)

Arguments

plate

A parent plate

type

parent plate type

child_type

child plate type

Details

Non-recursive approach.

Value

plate

Examples

## Not run: set_assiette_type(parent_plate_type,96well_plate)

Set The Child Plate Type

Description

Set The Child Plate Type

Usage

set_plate_type(parent_plate, type)

Arguments

parent_plate

plate

type

child plate type

Details

This is a recursive method.

Value

plate

Examples

## Not run: 
x = set_plate_type(parent_plate,"96well_plate")
print(class(x))
## End(Not run)

Plate Version

Description

Plate Version

Usage

set_plate_version(plate, pkg)

Arguments

plate

plate

pkg

package

Value

plate

See Also

Other plate_utils: check_dirt(), get_wells_used(), plate_data_summary(), platename, remove_leading_zero(), saveloadutils, type()

Examples

## Not run: set_plate_version(plate,pkg)

Set Plate Steps

Description

Set Plate Steps

Usage

steps(plate)

steps(plate) <- value

Arguments

plate

plate

value

value

Value

plate

plate

plate

See Also

Other steps: stepsutils

Examples

## Not run: steps(plate)

Random Port gptstudio style

Description

Random Port gptstudio style

Usage

shiny_random_port()

Value

port


Status

Description

Status

Usage

status(plate)

status(plate) <- value

dirty(plate)

dirty(plate) <- value

is_plate_dirty(plate)

Arguments

plate

plate

value

value

Value

plate

plate

plate

plate

plate

logical

Examples

## Not run: status(plate, status)

Steps Pipeline

Description

Steps Pipeline

Usage

.next_step(plate, n = 1)

next_step(plate, n = 1)

run_steps(plate, reset = FALSE, ...)

Arguments

plate

plate

n

n

reset

reset

...

dots

Value

plate

plate

plate

plate

Note

Recursive function to implement steps in the plate until all steps in the pipeline are complete

Recursive function to implement steps in the plate until all steps in the pipeline are complete

Examples

## Not run: next_step(plate, n=1)

Steps Utils

Description

Steps Utils

Usage

step(plate, step)

step_name(plate, step)

.step_name(plate, step)

get_step_key_by_index(steps, index)

step_begin(...)

step_end(...)

has_step(plate, step)

check_step(plate, step)

steps_complete(plate)

Arguments

plate

plate

step

step

steps

steps

index

index

...

dots

Value

plate

step number

step name

step name

step name

boolean

boolean

boolean

Note

Step start time utilizing the cache

Step start time utilizing the cache

See Also

Other steps: setsteps

Examples

## Not run: step(plate, step)

Test Boilerplate

Description

Test Boilerplate

Open Testfile

Usage

test_boilerplate(file_name = NULL)

open_testfile(testfile)

Arguments

file_name

file name

testfile

test file

Value

test boilerplate

open test file

Note

Solves the inconvenient process of navigating to the tests folder every time

Examples

## Not run: test_boilerplate(file_name = "test_remove_shit.R")
## Not run: open_testfile('test_pipeline.R')

Plate Type

Description

Plate Type

Usage

type(plate, all = FALSE)

Arguments

plate

plate

all

Boolean

Value

class attribute

See Also

Other plate_utils: check_dirt(), get_wells_used(), plate_data_summary(), platename, remove_leading_zero(), saveloadutils, set_plate_version()

Examples

## Not run: type(plate)

Upload Plate Data

Description

Upload Plate Data

Usage

upload_data(plate, file, ...)

## Default S3 method:
upload_data(plate, file, ...)

## S3 method for class ''96well_plate''
upload_data(plate, file, ...)

## S3 method for class ''384well_plate''
upload_data(plate, file, ...)

## S3 method for class ''1536well_plate_t1''
upload_data(plate, file, ...)

## S3 method for class ''1536well_plate_t2''
upload_data(plate, file, ...)

Arguments

plate

plate

file

file

...

dots

Value

plate

plate

plate

plate

plate

plate

plate

Examples

## Not run: upload_data(plate, file, ...)

View App in Viewer Pane

Description

View App in Viewer Pane

Usage

viewerpane_background_normfluodbf(host, port)

Arguments

host

host

port

port


Validate URL

Description

Validate URL

Usage

wait_for_bg_shinyapp(url)

Arguments

url

url


Plot Coordinates

Description

Plot Coordinates

Usage

x_var_one(plate)

x_var_one(plate) <- value

x_var_two(plate)

x_var_two(plate) <- value

y_var(plate)

y_var(plate) <- value

x_var_one_label(plate)

x_var_one_label(plate) <- value

x_var_two_label(plate)

x_var_two_label(plate) <- value

Arguments

plate

plate

value

value

Value

plate

plate

plate

plate

plate

plate

plate

plate

plate

plate

Examples

## Not run: x_var_one(plate,value)